$\mu \textbf{RWELL Detector R\&D for EIC} \\ \textbf{and Others} \\$

2025 / 02 / 21

Inseok Yoon (SNU)

KU SNU Mini-workshop @ Kyushu University

Contents

- Introduction to $\mu RWELL$
- Working principle
- Low and high rate $\mu RWELL$
- Production process
- The ePIC experiment
- Physics goal
- Contribution plan toward GEM + μ RWELL ECT
- DAMSA, LHCb?, Future collider?
- Current R&D status

- Micro Resistive WELL, a resistive variant of GEM
- Resistive layer, DLC, prevents streamer from evolving discharge
- No spatial separation between the avalanche and induction region is required
- \rightarrow Self-rigidity \Rightarrow Simpler detector structure \Rightarrow Cost effective

- Position resolution ~ 70μm Time resolution ~ 5-7 ns

- High rate μ RWELL
- Rate capability of μ RWELL is limited due to voltage drop occurring charge drain

- The rate capability can be restored through additional grounds
- ePIC, DAMSA \rightarrow Low rate μ RWELL LHCb, CLAS12 \rightarrow High rate μ RWELL

• GEM and μ RWELL share production process

- Gluing
- Cu etching
- PI etching
- Cleaning to give HV stability
- DLC-FCCL
- Sputtering
- Will be done in CERN MPT
- Looking for domestic companies as well

2. ePIC Experiment

• BNL is building a new polarized electron ring around RHIC

- To understand how spin and mass of proton emerge from its constituents
- To understand proton structure in higher dimension i.e. TMD and GPD
- To understand pion and kaon(?) structure
- Gluon saturation exists or not

2. ePIC Experiment – Spin

- EMC experiment (Nuclear Physics B 328, 1 (1989)) revealed spin carried by quarks ($\Delta\Sigma$) was surprisingly small < 0.12
- Series of polarized DIS and SIDIS
- → Proton Spin Crisis!

puzzling result was termed the "proton spin crisis".^[4] The problem is considered one of the important unsolved problems in physics.^[5]

- Jaffe-Monohar sum rule
- $-S^p = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_z^q + \Delta G + L_z^g$

 \rightarrow We should not ignore gluon and angular momentum contribution!

2. ePIC Experiment – Spin

• Inclusive
$$A_{LL}$$

$$\frac{1}{2} \left[\frac{d^2 \sigma^{\Leftarrow}}{dx dQ^2} - \frac{d^2 \sigma^{\Rightarrow}}{dx dQ^2} \right] \cong \frac{4\pi \alpha^2}{Q^4} y(2-y) g_1(x,Q^2)$$

, where $g_1(x, Q^2) = \frac{1}{2} \sum e_q^2 [\Delta q(x, Q^2) + \Delta \bar{q}(x, Q^2)].$

- Δg is encoded in scale violation of g_1

2. ePIC Experiment – Gluon Saturation

- Will gluon density continue to increase in low enough x region?
 - Probably not

BK evolution

 $-\frac{\partial N(x,r_T)}{\partial \ln(1/x)} = \alpha_S K_{BFKL} \otimes N(x,r_T) - \alpha_S [N(x,r_T)]^2$

HERA implied the existence of CGC

 $Y = \ln 1/x$

2. ePIC Experiment – Gluon Saturation

- Nuclear "Oomph" factor
 - To access CGC, we need higher beam energy or heavy ion collision
- Gluon fields are overlapped by Lorentz contraction and higher density gluon field can be probed wo/ increasing beam energy

2. ePIC Experiment – ECT

2. ePIC Experiment – ECT

- "Main risk is related to CERN being the unique producer of μRWELL detector layer"
- \rightarrow Korea can mitigate this risk
- In-kind contribution of GEM & $\mu RWELL$ for the ECT project
- 2.2 M USD is very likely
- PI: Prof. Seonho Choi
- Starter of the Korean μ RWELL R&D

	DURATION			
START DATE	END DATE	DESCRIPTION	(years)	
3/1/24	12/31/24	Detectors Overall Design	<1	
1/1/25	12/31/26	Pre - Production	2	
1/1/27	31/12/29	Production & QA	3	
1/1/30	6/1/30	Commissioning & Installation	0.5	

3. DAMSA Experiment

• Search for $a \to \gamma \gamma$ and $A' \to e^+e^-$ using the beam dump of Fermi Lab. L'ANNA KANA PIP 2

" "

- PRD 107 L031901 2023

- μ RWELL tracker with XY 128*128 capacitive sharing RO

The key of the DAMSA experiment is to place

the detector directly behind the beam dump

4. LHCb?

• LHCb will replace MWPC to (GEM +) high rate μ RWELL

- Due to limited rate capability of MWPC

• 574 chambers to cover $40 m^2$

- Producing all necessary µRWELL @ CERN MPT alone may not be possible

- If LHCb chooses GRWELL as it seems to be leaning toward recently, it will be nearly impossible to complete production solely through CERN MPT

Journal of Instrumentation	<u></u>
OPEN ACCESS	
The µ-RWELL layouts for high particle rate	Recent citations
To cite this article: G. Bencivenni et al 2019 JINST 14 P05014	 Development of Micromegas detectad with resistive anode pads M. Chefdeville et al
View the <u>article online</u> for updates and enhancements.	Position-Sensitive Thermal and Cold Neutron Detectors with SS_(2)*(3)(tent(Hei))SS Gas Converts (Review) A. P. Kashchuk and O. V. Levitskaya
0	The Well (micro-Well) Electron Multip with the DLQanode—a key element robust and fast 2D-position sensitive MPGD A Kashchuk et a/
Farens	\sim

5. Future Collider?

• Not sure which collider will be realized. However, it's clear that μ RWELL will be crucial in new experiment

- IDEA plan requires so many $50\times50cm^2~\mu \rm RWELL$ for pre-shower (520) and muon station (1520)

6. Current Status

- Procurement for μ RWELL production R&D
- DLC-FCCL
 - 1 XY 128*128 Ch. RO PCB
 - Gas frame, o-ring, ETC were delivered from CERN MPT
- 1 Ch. RO PCBs for test produced in Korea
- DAQ for the R&D and DAMSA experiment
- Purchasing SRS system with VMM3a hybrid card

6. Current Status – Gluing

- Pressing DLC FCCL, pre-preg and RO PCB at high temperature in a vacuum chamber
- Common technique in PCB maker
- Use only 7-10 bar, half of common PCB process, not to damage Cu layer
- At such low pressure, flatness control is crucial Pressure regularization also is crucial
- \Rightarrow Know-how in "stack" construction is important

6. Current Status – Gluing

- The first press work attempted, evaluating results
- Not perfect but promising result is obtained
- Flatness seems fine, but pressure regulation was insufficient
 Glass wool pattern from Pre-Preg visible on Cu layer
 Will retry with a different pressure regulation pad
- Cu etching will be attempted soon

Vacuum hot press

Summary

- μ RWELL, resistive variant of GEM, is very promising technology
- Free from discharge & simpler structure

- Using expertise we've accumulated during the CMS GEM project, SNU can produce μRWELL

- The ECT of the ePIC experiment is the first contribution site
- Many fundamental nuclear physics goals will be covered by the ePIC
- The budget for the in-kind contribution is secured
- The DAMSA experiment is the second
- Hope to contribute to LHCb and future collider experiments
- Attempted the first μ RWELL production step: glue process
- Not perfect but promising result is obtained

• Working principle

Ionization \rightarrow Drift \rightarrow Multiplication \rightarrow Signal induction \rightarrow Charge drain

Limitation of MWPC

⇒ Mechanical complexity → lack of scalability Limited multi-track resolution $\sim O(10mm)$ Not enough rate capability Aging

Fabio Sauli

1. Introduction to μ RWELL

- Micro Strip Gaseous Counter
- Susceptible to discharges
- Streamer formation
 - Field distortion by space charge and secondary avalanche by UV
 - $\rightarrow P_{discharge} \sim e^{gain}$
 - \Rightarrow Necessity of quenching gas
- For rate capability and multi-track resolution, micro patterning was the right direction to go
- \Rightarrow Preventing discharges became the key of MPGD
- \rightarrow Step by step amplification & separation of induction and amplification region
- \rightarrow Resistive layer

2. Production processes

• The DLC layer is formed by a sputtering process and are procured by ordering it from CERN or other suppliers

- Pressing DLC FCCL, pre-preg and RO PCB at high temperature in a vacuum chamber
- Will be done by PCB maker
- Common PCB pressing process, but requires know-how to construct "stack" to control the flatness issue

2. Production processes

• PI layer etching

- KOH, amine Service Area Active Area Service Area

2. Production processes

- Soldering connectors and cleaning
- C-cleaning & E-cleaning needs lots of know-how
- We have the know-how through KCMS GEM production

7. Introduction to high rate μ RWELL

• PI etching

• Drilling (CNC)

Plating

- Gas electron multiplier
- Step-by-step amplification & separation of induction and amplification region

- Advantages of GEM
- Good position and multi-track resolution
- Fair time resolution
- Extremely robust to classical aging
- Extremely high rate capability
- \rightarrow Nice detectors for high rate experiments and imaging application

- Micro resistive well, the resistive variant of GEM
- Resistive layer, DLC, prevents streamer from evolving discharge
- No spatial separation between the avalanche and induction regions is required

29

- Simpler structure and easier assembly
- Self rigidity due to RO
- One foil is enough
- Simpler HV supply

 \Rightarrow Cheap

2. Proton spin structure and PHENIX experiment

RHIC spin program

- Polarized p+p collision @ \sqrt{s} = 200 and 510 GeV
- Jet and hadron A_{LL} to constrain $\Delta G @$ LO

$$A_{LL}^{h} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

$$= \frac{\sum_{f_{a,b}=q,\bar{q},g} \Delta f_a \otimes \Delta f_b \otimes \Delta \hat{\sigma}_{elastic}^{a+b \to c+X} \otimes D_c^h}{\sum_{f_{a,b}=q,\bar{q},g} f_a \otimes f_b \otimes \hat{\sigma}_{elastic}^{a+b \to c+X} \otimes D_c^h}$$

$$= \frac{\sum_{f_{a,b}=q,\bar{q},g} \Delta f_a \otimes \Delta f_b \otimes \hat{\sigma}_{elastic}^{a+b \to c+X} \times \hat{a}_{LL}^{a+b \to c+X} \otimes D_c^h}{\sum_{f_{a,b}=q,\bar{q},g} f_a \otimes f_b \otimes \hat{\sigma}_{elastic}^{a+b \to c+X} \otimes D_c^h}$$

$$\Delta f = f^{\uparrow} - f^{\downarrow}$$

EIC Scope

Physics programs – spin structure of proton

• OAM

- As S_q and S_g are expected to be precise, OAM will be constrained

- $J^q = \frac{1}{2} - J^g = \frac{1}{2} \int dx x [H^q(x, \xi = 0, t = 0) + E^q(x, \xi = 0, t = 0)]$, where *H* and *E* are GPD

 $OAM_q = J^q - S_q$ and $OAM_g = J^g - S_g$

- H and E are accessible at EIC and JLab via DVCS and DVMP

Physics programs – Multi. D. imaging of proton

Physics programs – GPDs

- GPDs provide a connection between PDFs and form factors
- The cleanest channels to access GPDs are DVCS and DVMP
- $x + \xi$ and $x \xi$ are longitudinal parton momentum fractions with respect to the average proton momentum $\frac{p+p'}{2}$ before and after scattering

Physics programs – TMDs

• $\frac{d\sigma}{dxdyd\phi_Sdzd\phi_hdP_{hT}^z} \propto F_{UU} + |S_{\perp}| \sin(\phi_h - \phi_S) F_{UT}^{\sin(\phi_h - \phi_S)} + \cdots$, where $F_{UT}^{\sin(\phi_h - \phi_S)} = \sum_q e_q^2 |C_V(Q)|^2 [R(Q;\mu_0) \otimes f_{1T}^{\perp q}(x;\mu_0) \otimes D_1^q(z;\mu_0)] (P_T)$, where $|C_V(Q)|^2$ perturbative coefficient, $R(Q;\mu_0)$ evolution factor, $f_{1T}^{\perp q}(x;\mu_0)$

Sivers TDM, and D_1^q (z; μ_0) unpolarized TMD FF

Physics programs – Gluon saturation

- Will gluon density continue to increase in low enough x region?
 - Probably not

- BFKL evolution
- The evolution eq. that allows one to construct the PDF at low-x - $\frac{\partial N(x,r_T)}{\partial \ln(1/x)} = \alpha_s K_{BFKL} \otimes N(x,r_T)$, where $r_T \sim 1/Q$ (transverse distance) and Fourier Tr. of $N(x,r_T)$ is related to gluon TMD
- BK evolution

$$\frac{\partial N(x,r_T)}{\partial \ln(1/x)} = \alpha_S K_{BFKL} \otimes N(x,r_T) - \alpha_S [N(x,r_T)]^2$$

• HERA implied the existence of CGC

Physics programs – Gluon saturation

Nuclear "Oomph" factor

- To access CGC, we need higher beam energy or heavy ion collision

- Gluon fields are overlapped by Lorentz contraction and higher density gluon field can be probed wo/ increasing beam energy

-
$$Q_s^2(x) \sim A^{1/3}(\frac{1}{x})^{\lambda}$$
 where $\lambda = 0.2 - 0.3$

- Observables
- Nuclear structure function
- Di-hadron correlations
- Diffractive events

4. High rate μ RWELL application – LHCb

- Replacement of MWPC to high rate μ RWELL
- Due to limited rate capability of MWPC
- 574 chambers to cover 40 m^2
- Production will start ~2027
- Recently, the leader of the LHCb upgrade suggested collaboration
- PCB production @ Eltos, Italy
- μRWELL @ KCMS

 CERN has transferred technologies of μRWELL production to Eltos for FCC-ee
 However, Eltos failed in PI etching and is focusing on PCB production

 Need intensive technology R&D and mass production

Rates (kHz/cm ²)	M2	M3	M4	M5
R1	749	431	158	134
R2	74	54	23	15
R3	10	6	4	3
R4	8	2	2	2

